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C A L C U L A T I O N  O F  T H E  R I S E  V E L O C I T Y  O F  L A R G E  
G A S  B U B B L E S  

Yu. B. Zudin UDC 532.529.5 

The problem of determining the rate of rise of large gas bubbles in an infinite volume and a vertical tube is 

considered. In the first case the shape of the bubble is constructed by "gluing together" the front surface 
immersed in a flow of ideal liquid and the rear surface being formed under the action of gravitational and 
capillary forces, and in the second case the solution of the Laplace equation is constructed for the velocity 

potential in the problem of ideal liquid flow in a tube around a semiinfinite cylindrical body with a 
hemispherical frontal part. 

The problem of determining the rise velocity of gas bubbles in a liquid that fills an infinite volume and a 

vertical tube is a completely independent problem of the mechanics of two-phase flows [ 1 -  3 ]. 

Results of numerous experiments [1 -3  ] show that the rise velocity of sufficiently large bubbles is inde- 

pendent of the liquid viscosity. Consequently, the problem of the rise of a bubble in a liquid can be reduced to the 

problem of the flow of an ideal liquid past a free surface in a gravity field with the velocity at infinity U~ (equal 

to the bubble rise velocity in a quiescent liquid). 
Theoretical solutions of the problem of the rise of a bubble in an infinite volume cover only the region of 

small bubbles [3 ]. Well-known theoretical investigations of the rise of a bubble in a vertical tube [4, 5 ] use sums 
of  the first few terms of infinite exponential series along the axial coordinate of the flow for the infinite interval 
(-oo, + oo). These sums diverge on one of the semi-infinite intervals. 

In the present study, which is a continuation of [6-8  ], we obtained approximate analytical solutions that 

determine the Shape and the rise velocity of large gas bubbles. 

1. Rise of a Gas Bubble in an Infinite Volume. As is known [1-3  ], bubbles whose equivalent radius is 

much larger than the capillary constant ("very large" bubbles) have a shape close to a spherical segment (Fig. 1). 

Their rise velocity Uoo is related to the equivalent radius Req and the gravitational acceleration g by the relation 

[1-3]:  

Uoo = k 1 ~ q ,  (1) 

where k 1 ~ 0.95-1.05. 

The combined use of the Bernoulli equation for the streamline passing through the front stagnation point, 
the condition P = const on the free surface, and the law of ideal liquid flow around an arbitrary sphere (the upper 

segment of which is occupied by the bubble) gives the following relationship between the radius of the segment R 

and the liquid velocity at infinity: 

9 U2oo (2) 
R -  4 g 

Formula (2) was obtained already in [5]; when the value of the height of the segment h is unknown (see Fig. 1), 
it does not permit one to relate the rise velocity of the bubble to its equivalent radius Req. To close the description 
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Fig. 1. Scheme of flow round a large gas bubble. 
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Fig. 2. Scheme of flow round a moderately large gas bubble: 1) the front 

surface of the bubble immersed in the flow; 2) hydrostatic rear surface of the 

bubble. 

of the problem, the authors of [6] used an empirical relation from [9] for separation flow past bodies of circular 

midsection: 

1 + Opu2, (3) 
P0 - P1 - 2 

where P0, P1 are the pressure at the front stagnation point and in the "wake region" behind the body; 0 = 0.4 is 

the coefficient of "bottom rarefaction" [9 ]. 

Superposition of the gravity field and the condition P = const on the pattern of separation flow for the entire 

surface of the bubble leads to the following relationship between the height of the segment h and the liquid velocity 

at infinity Uoo: 

1 + 0  U2oo (4) 
h - - -  

2 g 

Formulas (2), (4) and elementary geometric relations for a spherical segment yield the final formula 

Uo~ = 1.05 V~gReq , (5) 

which virtually coincides with Eq. (1). 

Photographs in [3 ] show that as the size of the bubble decreases its "rear" surface becomes more and more 

convex, while the shape of a "moderately large" bubble acquires the shape of a prolate (in the direction of motion) 

ellipsoid. Within the framework of the scheme of separation flow the rear surface of the bubble should be determined 

as a part of the equilibrium hydrostatic surface formed under the simultaneous effect of gravity and capillary forces. 

Thus, the shape of a "moderately large" bubble is constructed by "gluing" two parts: the front part immersed in 

the flow and the hydrostatic rear part (Fig. 2). It should be noted that the real surface of a bubble cannot have 

sharp protrusions. The use of the scheme of Fig. 2 is justifiable for the following reasons: 1) the "gluing" is made 

along a circle lying on the surface of separation streamlines, i.e., immediatelt inside the discontinuity, which is 

considered to be infinitely thin in the well-known scheme of separation flow [9 ]; 2) when an "acute" surface is 

replaced by a "rounded" one with a small radius the geometric relations used in the calculations are virtually 
unchanged. 
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In [10] a theoretical determination is given for a family of surfaces of a bubble bounded by a liquid from 

below and by a solid wall from above and containing the contact angle 7 as a parameter. The assignment of a similar 

quantity for the case of "gluing" the front and rear surfaces of a "moderately large" bubble and account for Laplace 

jumps in pressure on the upper and lower surfaces of the bubble lead to the following relation [7 ]: 

2 0 p g R = p g ( h + h l )  + 2~ R1 R ' 

where hl and R1 are the height of the rear portion of the bubble and the radius of curvature at its lower point; cr 

is the coefficient of surface tension. In [7 ] relation (6) was used at the value of the "gluing angle" 7 ~ :~/4. It seems 

physically more justifiable to use the relation 

h + h 1 = k l R  1 ,  (7) 

which assumes that the vertical and horizontal dimensions of the bubble (similarly to the axes of an ellipsoid of 

revolution) preserve a fixed relation for the entire range of the dimensions of the bubble investigated. 

Using the results of a theoretical solution [10 ] for the equilibrium hydrostatic surface and also neglecting 

in Eq. (6) the quantity 1 / R  << 1 / R i ,  we obtain the final relation for the rise velocity of a bubble in a pool of liquid, 

which is valid for the entire investigated range of the dimensions of the bubbles (from "moderately large" to "very 

large"): 

U2oo = k l g R e  q + k2 c~ (8) 
PReq  " 

The use of empirical relation (7) alone permits one to determine both constants in Eq. (8): kl = 1.0; k2 = 1.3. 

Thus, relation (8) virtually coincides with the well-known empirical formula from [11 ]. 

2. Rise of a Bubble in a Vertical Tube. Experiments show [4, 5 ] that a large bubble rising in a vertical 

tube has an approximately hemispherical front portion passing into a cylindrical "periphery" separated from the 

wall by a thin liquid layer. The rise velocity of the bubble is independent of its length (which is much larger than 

the radius of the tube) and is determined only by the tube radius Ro: 

Uoo = k 3 gYr-'~O, (9) 

where k3 = 0.48-0.50. The flow around a semiinfinite body in a tube that simulates a bubble is described by the 

Laplace equation for the velocity potential 0o 

o f + _ _  =0, 
Oz 2 r Or Or 

where z, r are the dimensionless axial and radial coordinates (the tube radius R0 is the length scale). Solution (10) 

is sought in the form of a superposition of two flows (Fig. 3): 
a) the flow from a point source in an impenetrable tube located at the coordinate origin (z = r -- 0) that is 

a homogeneous flow with the velocity U0 at z --, + oo; 

b) a "superimposed" homogeneous flow with the velocity U1 -> U0. 
Let us write out the dimensionless expressions for the velocity potential ~o and the axial u and radial v 

velocities of the flow (the asymptotic velocity of the source Uo is taken as the velocity scale): 

1 1 1 7 K1 (e) I 0 (Er) cos (ez)  
~o = s de - f z  ; (11) 

2 (z 2+r2 )  1/2 ar 0 I 1 (e) 

1 z 1 ~ e K  1 (e) I 0 (el') sin (ez)  (12) u - + - -  J de - . f;  
2 (z 2 + r 2 )  3/2 or 0 I 1 (e) 
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Fig. 3. Scheme of the flow past a large gas bubble in a cylindrical tube: 1) 

overall velocity of the flow from the mass source U0 and the imposed uniform 

flow U1 for z --, oo (the rise velocity of the bubble in the tube); 2) point mass 

source at the coordinate origin; 3) asymptotic velocity of the flow from the 

mass source for z --, -co;  4) surface of the bubble; 5) surface of the tube. 

1 r 1 ~ eK  1 (e) I 1 (er) cos (ez )  
v -  j d~. 

2 (z 2 + r2) aa Jr o I 1 (e) 
(13) 

Here f - -  U1/Uo is the source intensity parameter,  connected with the distance z 0 from the coordinate origin to the 

front stagnation point of the body in flow by the relation 

1 1 ~ eK 1 (e) sin (eZo) (14) f =  2-t--- J de 
2z 0 n 0 I 1 (e) 

(Io(e), I1 (e), K1 (e) are modified Bessel functions of the first and second kind [2 ]). The flow described by relations 

(11)-(14) satisfies the condition of zero leakage on the tube wall (at r = 1) and also on the surface of the body 

immersed in flow (see Fig. 3). Representing the flow velocity components by linear terms of an expansion in a 

Taylor  series in the vicinity of the front stagnation point with account for the condition P -- const on the free surface, 

we obtain 

U2oo ( f -  1)2f  " 
m 

gno (f ,)3 
(15) 

Here f '  = df /dzo,  f "  = d2f/dz~, Uo~ = U1 - U 0 is the overall velocity of the flow for z ~ co (equal to the bubble 

rise velocity in the tube). 
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To close the description of the problem the simplest version of the method of collocations [13 ] was used 

in [8 ]: it was necessary to fulfill the condition P = const also at the point on the body surface at z = 0 in addition 

to the front stagnation point. 
To find a more rigorous closure of the problem, we will apply the above-described approximate method to 

the problem of the rise of a "plane bubble" in a slit described by the two-dimensional Laplace equation 

~ x  2 02W (16) + = 0 ,  
0z 2 

where x is thetransverse coordinate, reckoned from t he  symmetry plane: (here the length scale H is, equal to,half ~ 

the distance between the  two planes that form the  slit). The. problem of the rise of a "plane bubble!' has an abstract 

nature and is not realized experimentally; it has the advantage of having an exact solution [9 ]: 

0 

Let~:las 'Write o u t a n  approximate :Solution foi' the  i~lafie problem gimilaf to so lu t ion  (11): (15) for the 

axisymmetric problem: 

1 2 7 exp ( -  e) ch (ex) cos (ez) de - fz" 
~o = ~ In (z  2 + x 2) - ~ 0 e sh  e ' (11') 

2 z 2 7 e x p ( -  e) ch (ex) sin (ez) (12') u = - -  , + - - a  d e - f ;  

z2r'-I - x ~ 0 

( ~  ) (14') f = cth -~ z 0 ; 

U2oo (1 - exp ( -  Z~Zo)) 2 (15') 
g/-/ 

In the limit z o -, oo Eq. (15') yields a relation for the rise velocity of a "plane bubble" U| = 0.326, which 

agrees well with the exact solution of [9 ]. 
Performing a similar limiting transition for z 0 --, oo for the problem of the rise of a bubble in a tube (the 

formal mathematical procedure of which is described in [14 ]), we arrive at the final relation for the rise velocity: 

U~ 

gR o 
= 0 . 5 1 1 ,  (18)  

which agrees well with empirical formula (9). 
Expressions (8) and (18), which determine the rise velocity of large gas bubbles in a liquid filling an infinite 

volume and a round tube, can be used in various applications of the mechanics of two-phase flows. 

R E F E R E N C E S  

1. G. Wallis, One-Dimensional Two-Phase Flows [Russian translation ], Moscow (1970). 

14 



2. J. Batchelor, Introduction to the Dynamics of a Fluid [Russian translation ], Moscow (1973). 
3. J.F. Harper, Adv. Appl. Mech., 12, 59-129 (1972). 
4. D.T. Dumitrescu, ZAMM, 23, 139-148 (1943). 
5. R.M. Davies and G. I. Taylor, Proc. Roy. Soc,., 200-A, 377-386 (1950). 
6. D.A. Labuntsov and Yu. B. Zudin, Trudy MEI, Issue 268, 72-78 (1975). 

r 

7. Yu. B. Zudin, Trudy MEI, Issue 268, 79-86 (1975). 
8. D.A. Labuntsov and Yu. B. Zudin, Trudy MEI, Issue 310, 107-115 (1976). 
9. G. Birkhoff and E. H. Zarantonello, Jets, Wakes and Cavities, Academic Press Inc. Publishers, New York 

(1957). 
10. V.G. Babskii, N. D. Kopachevskii, A. D. Myshkis, et al., The Hydromechanics of Weightlessness [in Russian ], 

Moscow (1976). 
11. H.D. Mendelson, AIChE J., 13, No. 2, 250-254 (t967). 
12. E. Gray and G. B. Mathews, Bessel Functions and Their Applications to Physics and Mechanics [Russian 

translation ], Moscow (1953). 
13. L.V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis [in Russian ], Moscow (1962). 
14. Yu. B. Zudin, Inzh.-Fiz. Zh., 63, No. 1, 28-31 (1992). 

15 


